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By A. R. Gourlay and J. Li. Morris 

Introduction. In [3] the authors introduced several schemes for the numerical 
integration of nonlinear hyperbolic systems. In this paper these schemes are ex- 
tended to solve the nonlinear systems 

au 
+ Of (u, x, t) = z(u, x, t) 

au = z(u, x, t) 

and the corresponding problems in two-space dimensions. Also a procedure is de- 
veloped whereby the extra boundary data required by these schemes can be intro- 
duced in a smooth manner. 

1. Explicit One-Space Dimensional Scheme. Consider the first-order hyperbolic 
system 

at + Of (,x,t) = z(ux,t) 

where u is an unknown vector function of x and t and f and z are vector functions 
of the components of u, and of x and t. We shall be concerned with the solution 
of this problem in the region 

0 < x _ a, t > 0, 

and will assume initial data u(x, 0) = uo(x) and boundary data u(0, t) = ul(t), 
t > 0. This problem is only properly posed if the Jacobian matrix of the com- 
ponents of f with respect to the components of u is positive definite. We have made 
this assumption to simplify the analysis. 

If differentiation is carried out in (1.1) the equation 

(1.2) at + A(u, x,t) = z(u, x,t) 

is obtained, where z in (1.2) is not necessarily the same as in (1.1), and where 
A (u, x, t), the Jacobian matrix of f with respect to u, is positive definite. Whilst 
we can always derive an equation of the form (1.2) from (1.1), the process is not 
always reversible. We therefore will consider (1.1) and (1.2) separately. The 
definitions and notation will be as in [3]. We therefore have 

u(xi, t) = u(ih, mk)=um = u i = O.* * ,Nm = O 1,* **, 
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Hxur = u' i -u , 

p = k/h, 

where k and h are the mesh spacings in the time and space directions respectively. 
The proposed scheme to solve (1.1) then takes the form 

(1.3) UM = um - ap(Hxfr - 2hzm), 

(1.4) Um+i = n- p[bHjm + cHxfm*+ + eHxzm+l + 2h(dz*+i + Szm+l + qzm)], 

where a, b, c, e, d, s, q are constants to be determined and 

U= 2(UM"+ + Umit) 

fm*+ = f(u*+i, xi, tm) , zM+ = z(uM+i, xi, tM), 

Jm+1 = f(Um, xi, tm+i), Zim+i = z(UM, xi, tm+i). 
The scheme (1.3) is a first-order approximation to (1.1) evaluated at time level 
(m + 2a)k. We require that the overall scheme (1.3) and (1.4) (on elimination of 
U*+i) be a second-order correct approximation to (1.1). 

By substituting for u*+, from (1.3) into (1.4) and expanding by Taylor's the- 
orem we obtain 

Um+l = u - 2ph[(b + c + e) af + (d + s + q)z] 

(1.5) + p 2h 2 4ac a (A af - )) + 4ad( 'f -z dz 
L a \ax 1/ax /a 

-2e d(d )2s -d ] + 0(h')X ax at at+(h) 

where u = Ur, and where we have used (1.1). An expansion of um+l in terms of 
u (Urn) and its derivatives yield 

um+l = u+phz ax + 2 

[ a'z az ( a_ f (a'af + A( f-'x)]+0(h) 
at + au \ ax/ ax at \ ax //\ 

where use has again been made of (1.1), and where 

d= Lim {0(8ux, t), x, t + At)-0(u x, t), x, t)} 
at A t-O At 

Comparing coefficients in (1.5) and (1.6), we see that for a second-order correct 
scheme we require that the equations 

2(b+c+e) = 1, 2(d+s+q) = -1, 
4ac= I, 4ad=-, 2e= 2, 2s= -2 

must be satisfied. These equations have the solution 

in terms oh /8ae b aqr m(1e-1/2a), e as 

in terms of the parameter a. 
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The scheme (1.3), (1.4) can then be written as 

U*+1 = Urm - ap(Hxfm - 2hzm), 

(1.7) Um+l = ur - p/4[(1 - 1/2a)(Hzfm - 2hzm) 

+ (1/2a)(Hfm*+? - 2hz4*+) + (fIxYm+ - 2hrm+)] 

A similar analysis for Eq. (1.2) yields the scheme 

=+ ur - ap(AmHxum - 2hzm), 

(1.8) um+l = Un - p/4[(l - 1/2a)(AmHxum - 2hzm) + (1/2a) 

X (A*+1Hu*+ - 2hz*+4 ) + (74m+Hxum- 2hzm+i)], 

where A*+1 -A(u*+1, x , tm) and Am+1 = A(um, x , tm+i). 
In [3], the authors derived for the simpler equations 

au/Ot + af(u)/Ox = 0, 

au/at + A(u) au/Ox = 0 

an iterative scheme based on the analogues of (1.7) and (1.8). This process can 
be derived in a similar manner for Eqs. (1.1) and (1.2). We briefly state the scheme 
for Eq. (1.1), having put a =2 

Um+1 = Ur-p/2[Hfm -2hzm] 

U+= Urnm p/4[(Hxf4(1- 2hzj~') + (Hxjm+ -2hzm+i)], j = 0,1, *-- 

where 

= f*+1 and z (0) = Z 

Although this scheme gave reasonable results in numerical examples we shortly 
propose a modification of (1.7) which appears to give comparable accuracy with 
much less computation. 

Whereas the differential problem (1.1) is well posed with boundary data only 
given on x = 0, the finite-difference scheme (1.7) requires in addition data on the 
line x= a. 

a 

0t 
FIGURE 1 
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As the experiments of Richtmyer and Morton [5], Gary [2] and Parter [4] have 
shown, when a numerical method is implemented, considerable care has to be 
taken when inserting such extra data. 

In [3] we used the above iteration technique together with extra data derived 
from the theoretical solution to the problem. An alternative technique is now pro- 
posed which is relatively easy to implement in all situations. [We have restricted 
ourselves to the case A (u, x, t) > 0 to simplify the following analysis. It may be 
carried through in general.] 

There are two boundaries on which data requires to be introduced in order to 
use (1.7), namely the x = 0 and x = a boundaries, where a = Nh. Since we have 
assumed the matrix A to be positive definite, the differential problem is well posed 
with boundary data given on x = 0. If theoretical data is imposed on x = a then 
the problem is overdetermined. We shall avoid this difficulty by replacing our 
difference scheme (1.7) for x = Nh by another scheme which has the same prin- 
cipal part of truncation error, but which only involves values of uim for i ? N. We 
use this scheme to calculate UN*m+l and UNm+I. Equation (1.7) with operator H2 
written as (Ax + V2) and ftm = '(A. - V. + 2)um is of the form 

U* = + ( V-,V + 2)Um - ap[(A- + Vx)fm - 2hz],X 

(1.9) Um+l = U - p/4[(1 - 1/2a)I (A, + V)fm - 2hzm 

+ (1/2a)I (A, + V-)f*+1 - 2hz*+II 

+ I (A- + Vx)Jm+l - 2hzm+l. 

From the definition of difference operators we have 

(1.10) AX= VX + v 2 + v3 + 0(h4) 

We derive our alternative scheme by substituting (1.10) in (1.9) to obtain 

(1.11) u*+I = 2 (VX2 + 2) um - ap[(2Vx + VX2)fm - 2hzm] 

um+i = Um - p/4 [ (1 - 1/2a) 1 (2VX + VX2 + Vx3)fm -2hzm 

(1.12) + (1/2a) { (2V, + VX2 + Vr3)fm*+1 - 2hz*+l} 

+ { (2Vx + V 2 + Vx3)7m+ -2hzm+i II. 
This formula is used only when x = a = Nh. This scheme has, by virtue of its 
derivation, the same principal part of truncation error as (1.7). A similar scheme 
may be derived for (1.8). The actual order of implementation in a problem is as 
follows: 

(1) the predictor of (1.7) is used for i = 1, * ,N -1, 
(2) it "t "t(1. 11) " it it i= N. 
(3) the corrector of (1.7) " " " i = 1,* N -1, 

(4) it it "(1.12)".. .. "i= N 
It is easily seen how this scheme may be extended to problems in which A (u, x, t) 
is not positive definite. If we generate the extra data by this technique, then the 
distribution of errors at any time level is smooth, and no error growth occurs at 
the x = a boundary. 
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2. Implicit One-Dimensional Scheme. As an approximation to (1.1) we consider 
now the implicit scheme 

U+ um - ap(Hixfm - 2hz.m) 

(2.1) Um+ = um - p[bHxfm + cHxA*+ium+l + dHxfm+l 

+ 2h(azm + Oz3*+l + 'y~m+i)] 

where A is defined by the relation, f(u, x, t) = A(u, x, t) .U. 

(Notice that the matrix A(u, x, t) is not defined uniquely by this relation.) 
A similar analysis to the explicit case determines the constants a, b, c, d, a, 

, y and the resulting scheme, correct to second order, is 

(2.2) u+1 = m- 2p(Hxfm - 
2hzm), 

[I + p/4H,4 A+iIum+ = ur-p/4[Hx7m+l - 2h(z*+1 + 2m+1)], 

where I is the unit matrix. This implicit scheme requires the inversion of a block 
tridiagonal matrix. A similar analysis for Eq. (1.2) gives the implicit scheme 

(2.3) UM+1 = Urnp-p/2(AmHxum 
- 2hzm) 

[I + p/4A*+iHx]um+j = [I - P/4Am+iHx]um + ph(z*+1 + 2m+i)/2. 

3. Explicit Two-Space Dimensional Scheme. We now briefly mention the 
analogues of (1.7) and (1.8) for the equations 

(3.1),t + -i (U, X, y, t) + d9 (U, X, y, t) = z(U, x, y, t), 

(3.2) au + A (u x, t) d + B(u, x, y, &I , = zku2 x, y, t) . 

For (3.1) the analogue of (1.7) is 

Um+j = um - ap[Hzfm + Hygm - 2hzm]rI 

(3.3) um+l = um - p/4[(1 - 1{lHxfm + Hgnm- 2hzm} 

+ 2a {Hxfm*+1 + Hy~g* -2hz*+1} 

+ {Hxhm+l + Hygm+l - 2hzm+l}] 

whilst for (3.2) it takes the form 

UM+i = U- ap[ArmHxum + BmHyur - 2hzrnI, 

Um+1 = U- p/4[(1 - {ArnHxum + B..HyUum - 2hzmr 

(3.4) 
+ 2{A*+THxu*+? + B*+,Hyu*+1 - 2hz*+1} 

3JmrniHxum + B7m+,Hyum - 2hzrm+lI], 
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where 

Urn = UTj = u(ih, jh, mk) , 

Hxum = U i- mj Hyum = u -j+1 - j 

and 
ZAmrn = 4[+,j + U7_1,j + U'j+1 + Usj_1]. 

These schemes are again second-order correct replacements of the respective 
differential equations. As in the one-dimensional case, an iterative scheme can be 
developed in an obvious way. Also the new boundary technique can be applied, 
though the computational effort is now increased. These processes will not be 
described. 

4. Implicit Two-Dimensional Scheme. In two dimensions the analogues of (2.2) 
and (2.3) are the alternating direction implicit schemes given, for (3.1), by 

Urn+i = Urn - PL2[Hxfm + HYrnm-2fZmI, 

(4.1) [I + p/4H,+A1]u*+l = Un- p/4 { [Hx7m+l + Hyg&+i] 
- 2h 

(z4**+ + 2m+1) 
} 

+ p 2/16HyFinHxfrnX 

[I + p/4H2A+l]um+i = +1 X 

where 

f(U, x, y, t) = i(u, x, yt) .', g(u, x, y, t) = B(u X, y, t) .U 

and a similar scheme for (3.2). 
These A.D.I. schemes employ the D'jakonov splitting [1]. 

5. Stability. So far no discussion has taken place as to the stability character- 
istics of these schemes. The results of [3] have been extended in two ways. Firstly, 
the vectors f (and g) have now been allowed to be functions of x, t, (y) in addition 
to u. Since our stability analysis in [3] was a linearized one, this extension does not 
affect the results. Secondly, we have allowed lower-order terms z in the equation. 
Since stability is a limiting process as h -* 0 it can be seen from the difference 
schemes that in the limit, the vector functions z have no effect on stability. The 
stability characteristics of the schemes in this paper are therefore taken to be 
those of their counterparts in [3]. Therefore the implicit schemes are uncondition- 
ally stable, the one-dimensional explicit scheme is stable if a _ 4, p _ 1/a' /2, and 
the two-dimensional explicit scheme is conditionally stable (exact inequality only 
derivable for specific problems). Likewise the convergence of the iterative schemes 
depends on the results of [3]. 

It is not clear whether the new boundary technique will affect the stability 
characteristics of the explicit methods. In experiments no difficulty has been en- 
countered. It should be noted that the new technique could also be applied at the 
"predictor" level in the implicit schemes. 

6. Numerical Results. The above methods were tested on two problems. The 
first was the one-dimensional equation 
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Ol z282 /32 \ 
2 

+u x u u (2x U 1o~2~ 
at t ax = \t I( 

subject to the initial condition u(x, 1) = sin (X2 - 1) and the boundary condition 
u(O, t) = -sin t. This problem has the theoretical solution 

u(x, t) = sin (X2 - t) 

and was solved in the region 0 < x < 1, 1 ? t ?1 + 100k, where k = ph is 
the step forward in the time direction. The space increment h was chosen to be 
0.1 and p took the values 0.6 and 1.0. 

TABLE 1 

Explicit Methods Implicit Methods 

Theoretical Two Boundary Theoretical 
p a Boundary Iterations Technique Boundary 

.6 .25 .1277 X 10-1 .1997 X 10-- 
1.0 .25 .1623 X 10-1 .1187 X 10-2 
.6 .50 .7222 X 10-2 .4131 X 10-2 .3236 X 10-2 .2231 X 10-s 

1.0 .50 .5367 X 10-2 .2339 X 10-2 .2559 X 10-3 .1629 X 10-2 

The errors are quoted in Table 1 for the point x = .7 and are representative 
of the errors at t = 1 + 100k. The advantages of iterating the corrector or using 
the boundary technique are evident from the above table. However, the new 
boundary technique is considerably less time consuming than the iterative method. 

The second problem considered was the two-dimensional equation 

au/at + ue-t(1 + X + X2 - y) au/lx + ue-t(1 + y + y2 - X) Cu/lx 

- -u[1 + e-2t(2 + X2 + y2]. 

subject to the conditions 

u(x, y, 0) = 1 - x - y 

u(O, y, t)= (1 -y)e-t , u(x, O, t) = (1 -x)e1t, 

which has the solution u = (1 - x - y)e-t. The problem was solved in the region 

0 < X, y < 1, 0 < t < 100k, and the errors are quoted in Table 2. 

TABLE 2 

Explicit Methods Implicit Method& 

Theoretical Two Boundary 
p a Boundary Iterations Technique A.D.I. 

0.6 .25 * -.4151X 10-4 

1.0 .25 * -.1182 X 10-1 
0.6 .50 * -.1635 X 10-5 -.1175 X 10-5 - .3290 X 10-5 
1.0 .50 * -.5322 X 10-1 -.4392 X 10-6 -.1120 X 10-6 
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In Table 2, the entries marked * indicate that nonlinear instability had oc- 
curred prior to t = 100k. The above results show clearly the advantages of the 
two techniques for incorporating or replacing the extra boundary data. 

Conclusion. The boundary replacement technique introduced above seems to 
have much to offer in the way of increased accuracy (and perhaps stability). The 
error distribution over a line (or plane) at a given time level tends to be "smoother" 
than if theoretical boundary data were employed. Although such smoothness may 
be obtained by iterating the corrector, it is a much more time consuming strategy. 

The methods developed in this paper can be extended in a natural way to a 
higher number of space dimensions. 

Acknowledgement. Mr. J. LI. Morris's share of the work was carried out whilst 
he was in receipt of a grant from the Science Research Council. 

University of St. Andrews 
St. Andrews, Scotland 

1. G. YE D'JAKONOV, "Difference schemes with a disintegrating operator for multidimensional 
problems," U.S.S.R. Compute. Math. and Math. Phys., v. 4, 1963, pp. 581-607. 

2. J. GARY, "On certain finite difference schemes for hyperbolic systems," Math. Comp., v. 
18, 1964, pp. 1-18. MR 28 #1776. 

3. A. R. GOURLAY & J. LL. MORRIS, "Finite difference methods for nonlinear hyperbolic 
systems," Math. Comp., v. 22, 1968, pp. 28-39. 

4. S. V. PARTER, "Stability, convergence and pseudo-stability of finite difference equations 
for an over-determined problem," Numer. Math., v. 4, 1962, pp. 277-292. MR 26 #5740. 

5. R. D. RICHTMYER .& K. W. MORTON, Stability Studies for Finite Difference Equations, 
N.Y.U. Courant Inst. Math. Sci. Res. Dep. N.Y.O.-1480-5, 1964. 


